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2 ‘ Motivation UDEs
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* Universal Differential Equations (UDEs) have been
successtully deployed to infer interpretable, predictive
dynamics from data [1,2].
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* UDEs embed ML models, e.g. neural nets (NNs) within
existing scientific models:
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* Can be formulated to respect physical principles by
construction.
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* Can be more predictive than Neural ODEs:
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3 | Motivation

* UDEs had to date been trained with observations of all state variables.

¢ Used to infer isolation dynamics early in the COVID-19 pandemic, but only had access to a subset of
state variables. [2]

How are inferred dynamics affected by incomplete observations,
e.g. inability to observe all state variables?



4+ I Compartment-based disease models [3]

Let Nyop = S(t) + 1(t) + R(2). Susceptible
5(t)
dS _ TSIIS
dt  Nyop
dl _ TSIIS I
At~ Ny, R
dR
E = Tigl

Recovered

R(t)

* SIR a common, simple model of disease spread.

* Lots of assumptions, but can provide basic understanding of the aggressiveness of disease spread

through RO! Reff



5 ‘ Compartment-based disease models [3]
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We know the classic SIR model is under-representative of the
real-world phenomenon it is intended to simulate.
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¢ | UDEs for compartment-based disease models

Let Nyop = S(t) + 1(t) + R(2). Susceptible
S(t)
dS _ TSIIS
dt  Nyop
Infectious
d] TSIIS I(t)
= — TIRI
dt  Npop
dR
E = Tigl

Recovered

R(¢)

* Does not account for significant portion of infected population being isolated as we saw for COVID-19.

* Isolation dynamics could depend nonlinearly on all state variables.



7 I UDEs for compartment-based disease models

Let Npop=S +1+ R +T.

dS _ TSIIS
dt  Nyop
dI TSIIS

— — I —0(S,[,R)I
dt Npop TIR Q( )
aR = I+ T
dr TIR TTR

dT
a4 Q(S,I,R)I — trRT
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* |2] introduced isolation state T, used UDE for the nonlinear, evolving transition rate into T, denoted Q.

*  represented with small neural network depending on S, & R, denoted NNj.

* By definition constrained to conserve population, 1.e. ——



s | Inferring transition into quarantine with incomplete data

* (Dandekar 2020 [2]) used observations of I, R to infer transition rates (including Q) for COVID-19.

° Only a subset of the state variables conld be observed.

* How does this affect the ability to recover “useful” information about () & disease dynamics?

Plan

* Generate synthetic data with prespecified N NQ, (.

* Infer NNy & transition rate parameters T, from combinatorial subsets of state variable observations.

o Data = [I,R,T],[I,R],[I,T],[R,T], [Il,[R], [T]

* Study MSE of inferred @ vs “true” @ for each dataset to determine when inference degrades.



9 I Problem Specification/State of Knowledge

* NNp: fully-connected NN of depth 1, width 10, ReL.U activation
functions.

° Architecture the same for data generation & inference.

* Synthetic data not corrupted by noise, full time trace used.

* Initial condition assumed known.

* All transition rate parameters T, uncertain; distributions dertved from
literature.

* NN parameters and T, trained using ADAM (learning rate 102, 10°
iterations).

* Models and training implemented using Julia’s SctML libraries:
https://sciml.ai

Densely connected
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https://sciml.ai/

0 | Ensemble training for robust learning and uncertainty quantification

* Challenges:
) g ] ' o 0.25 - Filtered samples
> Optimization can get stuck in local minima o Outlier samples
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* Mitigates effect of local minima in NN training.

> Filtered out outlier ensemble members (those with very large mean-squared error).

* Provides uncertainty information about training results. How much spread in
° unobserved state variable trajectories?
° optimized transition rate parameters?

° () trajectories?



11 ‘ Training results, data = [I,R, T]
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12 ‘ Training results, data = [R]
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13 | Ranking Q recovery by data subset

* Computed MSE of ensemble-mean (average) Q vs. true Q used to generate the data.

* Ranked data scenarios by MSE.

Average (Q Mean-Squared Error
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14 ‘ Training results, data = |[R, T
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5 ‘ Conclusions & Future Work
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* Next steps:
° Noisy and/or sparse data

° Data generated from more complex model

* For more complex model must determine appropriate accuracy metric (no “true O’ to compare to).
p pprop y p

* Potential metric: Error in observed state variables extrapolated beyond time horizon of training data.
> Incorporate prediction uncertainty using Bayesian neural UDEs [6] or Deep Ensembles [7].
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19 1 Initial sampling of transition rate params

* Tg; bounds reported directly in [4] for several locations; used max and min over locations to define a
uniform distribution.

* No direct bounds reported for T;p.

* When one pathway out of a population, transition rate 1s inverse of residence time in population, i.e.

1
TIR—T_I.

* Instead defined distribution on Tj.

* T1 = Tpresymptom T Tpostsymptom
* Toresymptom ~ U[1,3] days [5], Tpostsymptom ~ U[0,10] days (CDC guidance for symptomatic people)

* Tt = Tyostsymptom (assuming infected won’t isolate until symptom development)
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I Fraction of population

Filtering procedure

* Computed MSE for each ensemble member, each population in the data.

* Filtered out any ensemble member whose MSE was deemed an outlier using the interquartile range

(IQR) heuristic threshold:

Q3+ 1.5IQR = Q3 + 1.5(Q3 — Q1)

where (1= 0.25 quantile, 3=0.75 quantile.
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