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Motivation

• Universal Differential Equations (UDEs) have been 
successfully deployed to infer interpretable, predictive 
dynamics from data [1,2].

• UDEs embed ML models, e.g. neural nets (NNs) within 
existing scientific models:

𝒖! = 𝐹 𝒖, 𝑡, 𝑁𝑁" 𝒖
min
"

𝒅 − 𝒖(𝜃)

• Can be formulated to respect physical principles by 
construction.

• Data-efficient because making use of  prior physical 
information.

• Can be more predictive than Neural ODEs:

𝒖! = 𝑁𝑁" 𝒖
min
"
||𝒅 − 𝒖 𝜃 ||

2 UDEs
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Motivation

• UDEs had to date been trained with observations of  all state variables.

• Used to infer isolation dynamics early in the COVID-19 pandemic, but only had access to a subset of  
state variables. [2]

How are inferred dynamics affected by incomplete observations, 
e.g. inability to observe all state variables?
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Compartment-based disease models [3]4
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𝑁#$#
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𝑑𝑅
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Let 𝑁#$# = 𝑆(𝑡) + 𝐼(𝑡) + 𝑅(𝑡).

• SIR a common, simple model of  disease spread.

• Lots of  assumptions, but can provide basic understanding of  the aggressiveness of  disease spread 

through 𝑅%, 𝑅&''.
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Compartment-based disease models [3]5

Image Credit: NYT https://www.nytimes.com/interactive/2021/us/covid-cases.html [accessed 2020/07/12]

We know the classic SIR model is under-representative of the 
real-world phenomenon it is intended to simulate. 

Notional Plot of Infected Population, 𝐼(𝑡)
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UDEs for compartment-based disease models6
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Let 𝑁#$# = 𝑆(𝑡) + 𝐼(𝑡) + 𝑅(𝑡).

• Does not account for significant portion of  infected population being isolated as we saw for COVID-19.

• Isolation dynamics could depend nonlinearly on all state variables.
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UDEs for compartment-based disease models7
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𝑑𝑅
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Let 𝑁#$#= 𝑆 + 𝐼 + 𝑅 + 𝑇.

• [2] introduced isolation state 𝑇, used UDE for the nonlinear, evolving transition rate into 𝑇, denoted 𝑄. 

• 𝑄 represented with small neural network depending on 𝑆, 𝐼 & 𝑅, denoted 𝑁𝑁*.

• By definition constrained to conserve population, i.e. 
+,*+*
+-

= 0.
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Inferring transition into quarantine with incomplete data

• (Dandekar 2020 [2]) used observations of  𝐼, 𝑅 to infer transition rates (including 𝑄) for COVID-19.

◦ Only a subset of  the state variables could be observed.

• How does this affect the ability to recover “useful” information about 𝑄 & disease dynamics?

Plan 

• Generate synthetic data with prespecified 𝑁𝑁*, 𝜏∗.

• Infer 𝑁𝑁* & transition rate parameters 𝜏∗ from combinatorial subsets of  state variable observations. 

◦ Data = 𝐼, 𝑅, 𝑇 , 𝐼, 𝑅 , 𝐼, 𝑇 , 𝑅, 𝑇 , 𝐼 , 𝑅 , [𝑇]

• Study MSE of  inferred 𝑄 vs “true” 𝑄 for each dataset to determine when inference degrades. 
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Problem Specification/State of Knowledge

• 𝑁𝑁*: fully-connected NN of  depth 1, width 10, ReLU activation 
functions.
◦ Architecture the same for data generation & inference.

• Synthetic data not corrupted by noise, full time trace used.

• Initial condition assumed known.

• All transition rate parameters 𝜏∗ uncertain; distributions derived from 
literature.

• NN parameters and 𝜏∗ trained using ADAM (learning rate 10-2, 105
iterations).

• Models and training implemented using Julia’s SciML libraries: 
https://sciml.ai
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Ensemble training for robust learning and uncertainty quantification

• Challenges: 
◦ Optimization can get stuck in local minima

◦ Solution sensitive to initial guess

◦ Uncertainty in parameters

• Generated ensemble of  training solutions by 
generating 100 random initial guesses.
◦ NN parameters from Glorot initialization
◦ Distributions for transition rate parameters derived from 

literature. 
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• Mitigates effect of  local minima in NN training.
◦ Filtered out outlier ensemble members (those with very large mean-squared error).

• Provides uncertainty information about training results. How much spread in
◦ unobserved state variable trajectories?
◦ optimized transition rate parameters?
◦ 𝑄 trajectories?



Training results, data = [𝐼, 𝑅, 𝑇]11



Training results, data = [𝑅]12



Ranking Q recovery by data subset

• Computed MSE of  ensemble-mean (average) :𝑄 vs. true 𝑄 used to generate the data.

• Ranked data scenarios by MSE.
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Training results, data = [𝑅, 𝑇]14



Conclusions & Future Work

• Developed a procedure to study success of  UDE training 
when only able to observe subsets of  state variables.

• Ensemble of  training results provides understanding of  
uncertainty in inferred dynamics.

• Next steps:
◦ Noisy and/or sparse data
◦ Data generated from more complex model
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• For more complex model must determine appropriate accuracy metric (no “true 𝑄” to compare to).

• Potential metric: Error in observed state variables extrapolated beyond time horizon of  training data.
◦ Incorporate prediction uncertainty using Bayesian neural UDEs [6] or Deep Ensembles [7].
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Initial sampling of transition rate params

• 𝜏() bounds reported directly in [4] for several locations; used max and min over locations to define a 
uniform distribution.

• No direct bounds reported for 𝜏)/. 

• When one pathway out of  a population, transition rate is inverse of  residence time in population, i.e.

𝜏)/ =
0
1,

.

• Instead defined distribution on 𝑇).

• 𝑇) = 𝑇#2&345#-$5 + 𝑇#$3-345#-$5

• 𝑇#2&345#-$5 ∼ 𝒰 1,3 days [5], 𝑇#$3-345#-$5 ∼ 𝒰[0,10] days (CDC guidance for symptomatic people)

• 𝑇1 = 𝑇#$3-345#-$5 (assuming infected won’t isolate until symptom development)
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Filtering procedure

• Computed MSE for each ensemble member, each population in the data.

• Filtered out any ensemble member whose MSE was deemed an outlier using the interquartile range 
(IQR) heuristic threshold:

𝑄6 + 1.5 𝐼𝑄𝑅 = 𝑄6 + 1.5 𝑄6 − 𝑄0

where 𝑄0= 0.25 quantile, 𝑄6=0.75 quantile.
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