

A brief survey of uncertainty quantification

Teresa Portone

November 1, 2022

University of Alabama Mathematics Colloquium

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

SAND2022-15190 PE

- Numerical Linear Algebra
- Theory of Probability
- Real Analysis I/II

NATION

Gila Nation

Forest

Ciudad

- Mathematical Statistics
- Numerical Analysis
- Complex Calculus

• Major: Math, numerical track

Dittch

 Minor: Italian, (almost) photography

O

Ne

lelphia

/ JER

ARE

Beach

Port Wayne

Ne

National Forest

What is uncertainty quantification (UQ)?

My definition:

8

The science of characterizing, quantifying, and reducing uncertainties in mathematical models.

General references: [1-3]

UQ has taken off in the last couple decades

9

"Uncertainty quantification is both a new field and one that is as old as the disciplines of probability and statistics." (Smith 2013) [1]

What is uncertainty?

10

Inability to assign an exact value to a modeled quantity.

How does uncertainty arise?

Intrinsic variability in a modeled quantity

Lack of precise knowledge of a modeled quantity

$$f_s + f_d \equiv F = ma \equiv m \frac{d^2 x(t)}{dt^2}$$

$$m\frac{d^{2}x(t)}{dt^{2}} + c\frac{dx(t)}{dt} + kx(t) = 0$$

x(0) = 1, $\frac{dx(t)}{dt}(0) = 0$

Common sources of uncertainty 11

Result: uncertainty in model predictions

Real-world example

Quantity of Interest

13

 Concentration of radionuclide ¹²⁹I in nearby aquifer after 10⁶ years

Sources of uncertainty

- Properties of canisters holding nuclear waste (e.g. degradation rate)
- Subsurface properties (e.g. porosity, permeability)
- Environmental conditions (e.g. incidence of earthquake, glaciation)

Nuclear waste repository modeling

How do we *characterize* uncertainty?

Represent sources of uncertainty as random variables (RVs) Encode what is known through the parameterization of the RV

How do we *quantify* uncertainty?

Propagate sources of uncertainty to Qols

Compute statistics of Qols, e.g. mean, variance, tail probabilities

How do we *reduce* uncertainty? Use data to gain more precise knowledge of sources of uncertainty

$$m\frac{d^2x(t)}{dt^2} + c\frac{dx(t)}{dt} + kx(t) = 0$$

$$d = x_{true}(t = 10) + \epsilon_m, \qquad \epsilon_m \sim \mathcal{N}(0, \sigma^2)$$

What is the **likelihood** the model produced the data for a given *k*, *c*?

$$\mathcal{M}(k,c) \equiv x(t=10;k,c)$$

$$d = \mathcal{M}(k,c) + \epsilon_m, \qquad \epsilon_m \sim \mathcal{N}(0,\sigma^2)$$
$$d - \mathcal{M}(k,c) \sim \mathcal{N}(0,\sigma^2)$$
$$p(d|k,c) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{\left(d - M(k,c)\right)^2}{2\sigma^2}\right)$$

How do we *reduce* uncertainty? Use data to gain more precise knowledge of sources of uncertainty

$$p(d|k,c) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{\left(d - M(k,c)\right)^2}{2\sigma^2}\right)$$

$$p(k,c) = p(k)p(c)$$

Bayes' Theorem

$$p(k,c|d) = \frac{p(d|k,c)p(k,c)}{\int p(d|k,c)p(k,c)dkdc}$$

How do we *reduce* uncertainty?

Use data to gain more precise knowledge of sources of uncertainty

How do we

- characterize
 - quantify
 - reduce

uncertainty in practice?

20 Harsh reality

- Models for practical problems challenging
 - Nonlinear: propagating uncertainty + performing inference need many model evaluations
 - Computationally expensive; can afford few evaluations, causing poor statistical accuracy
 - High-dimensional problems
- Data expensive or impossible to attain
- Models imperfect representations of reality
 - Leads to unquantified error in predictions, biased Bayesian calibrations
 - But the correct model form is generally unknown (model-form uncertainty)
- Input/data uncertainties have to be modeled
 - If no quantitative information, have to encode prior belief through expert elicitation [4]

21 **Real-world example**

Data acquisition

- Subsurface properties: drill borehole(s)
- Canister properties: fabricate and test several canister specimens in the lab

Computational cost per model evaluation

- ~1.5 hours on 512 cores
- ~8 days on 4 cores
- ~22 years for 1000 samples on 4 cores

Nuclear waste repository modeling

Research areas in UQ

Goal: reduce computational burden of UQ by using approximate representations of model

$M(\theta) \approx f(\theta)$

Common statistical approaches

Gaussian processes [5,6]

Stochastic expansions (polynomial chaos, stochastic collocation) [7]

Machine learning!

Common reduced-order model (ROM) approaches Proper orthogonal decomposition [8,9]

Principal component analysis [10]

24 **Ongoing opportunities**

• Efficient surrogates/ROMs for high-dimensional models

Adaptive/goal-oriented surrogate/ROM construction

• More theory for error incurred in UQ analyses by using approximation of $M(\theta)$

• Multimodel surrogates

Research areas in UQ

Two types of high dimensionality

High cardinality

Ongoing opportunities

- Dimension reduction (PCA [10], active subspaces [11], autoencoders [12], ISOMAP [13])
 - Methods encouraging/exploiting sparsity
- Expanded theory for infinite-dimensional problems with less restrictive assumptions (e.g. linearity, Gaussianity) [14,15]
- Improve on existing inference methods
 - Derivative-based (MALA/HMC, Stochastic Newton, VI) [16-19]
 - Data-informed (DILI) [20]
- Methods to address high cardinality, especially for
 - Surrogates
 - Bayesian inference
 - Sensitivity analysis

Research areas in UQ

Idea: exploit lowerfidelity, cheaper models to lower cost for same accuracy

Idea: exploit lowerfidelity, cheaper models to lower cost for same accuracy

Discretization

Modeling assumptions

31 Sampling-based methods

$$\widehat{M}(\theta) = \frac{1}{N} \sum_{i=1}^{N} M(\theta^{(i)}), \qquad \theta^{(i)} \sim p(\theta) \text{ i.i.d.}$$

$$\mathbb{V}\big[\widehat{M}\big] = \frac{\mathbb{V}[M]}{N}$$

Sampling-based methods – control variates

32

$$M_1(\theta)$$
 $c_1 = \frac{C_1}{C} \ll 1$ $\operatorname{corr}(M, M_1) = \rho$

 $\widehat{M}_{CV}(\theta) = \widehat{M}(\theta) + \alpha \left(\widehat{M}_1(\theta) - \mathbb{E}[M_1]\right) \qquad \qquad \mathbb{E}\left[\widehat{M}_{CV}(\theta)\right] = \mathbb{E}[M] \longleftarrow \text{Unbiased}$

$$\mathbb{V}[\widehat{M}_{CV}(\theta)] = \frac{1}{N} (\mathbb{V}[M] + \alpha^2 \mathbb{V}[M_1] + 2\alpha \text{Cov}[M, M_1])$$
$$\alpha^* = \min_{\alpha} \mathbb{V}[\widehat{M}_{CV}(\theta)] = -\frac{\text{Cov}[M, M_1]}{\mathbb{V}[M_1]}$$

$$\mathbb{V}[\widehat{M}_{CV}(\theta)] = \frac{\mathbb{V}[M]}{N} (1 - \rho^2) \quad \longleftarrow \quad$$

 $\rho^2 \approx 1 \rightarrow$ orders of magnitude reduction in variance Sampling-based methods – beyond control variates

 $\widehat{M}_{CV}(\theta) = \widehat{M}(\theta) + \alpha \left(\widehat{M}_1(\theta) - \mathbb{E}[M_1]\right)$ Have to estimate this too

Multifidelity Monte Carlo [21]:

 $\alpha^* = -\frac{\rho_{\sqrt{\mathbb{V}[M]}}}{\sqrt{\pi/[M]}}$

$$\widehat{M}_{MFMC} = \widehat{M}(\theta) + \alpha \left(\widehat{M_1}(\theta) - \widehat{M_1}(\theta_1)\right)$$

Multimodel methods

- Theory extends to multiple (nonhierarchical) models
- Many algorithms combining different models and sample sets in different ways [21-24]
- Recent focus on multifidelity surrogates, e.g. Gaussian processes [25], multifidelity polynomial chaos [26], and several others [27-29]

$$M(\theta) \approx f(\theta)$$

$$M_{1}(\theta) \approx f_{1}(\theta)$$
$$M(\theta) - M_{1}(\theta) \approx f_{\Delta}(\theta)$$
$$M(\theta) \approx f_{1}(\theta) + f_{\Delta}(\theta)$$

Multimodel methods: ongoing opportunities

• Moving beyond functions of moments, e.g. tail probabilities, CDFs

• Startup cost of sampling all models to compute sample correlations \rightarrow exploration vs exploitation tradeoff to find optimal model ensemble

 Stochastic models: stochasticity weakens correlation, but averaging it out can models too costly

 Addressing dissimilar parametrization (high and low fidelity models don't have same uncertain parameters)

Research areas in UQ

Challenges and ongoing opportunities

$$p(d|\boldsymbol{\theta}) = \frac{p(d|\boldsymbol{\theta})p(\boldsymbol{\theta})}{\int p(d|\boldsymbol{\theta})p(\boldsymbol{\theta})d\boldsymbol{\theta}} \qquad p(d|\boldsymbol{\theta}) = \frac{1}{\sigma\sqrt{2\pi}}\exp\left(-\frac{\left(d-M(\boldsymbol{\theta})\right)^2}{2\sigma^2}\right)$$

If $M(\boldsymbol{\theta})$ nonlinear, can't compute analytically.

Markov Chain Monte Carlo [14,16-18,19] and Variational Inference [19] methods numerically approximate $p(\theta|d)$ --need many model evaluations

Much work in multimodel, derivative-based, & surrogate/reduced-order modeling methods to make this tractable. Methods in optimization can be leveraged

Opportunities for improvement: methods addressing multimodal and/or non-Gaussian posteriors; high dimensionality; model error

Research areas in UQ

Sensitivity analysis methods provide a quantitative measure of output sensitivity to each input [30]

Extremely powerful tool in mathematical modeling. Supports

- Scientific discovery/model interpretation increase understanding of relationships between inputs + their interactions and outputs
- *Dimension reduction* parameters identified to not affect model predictions can be screened out of further uncertainty analysis
- Model improvement resources can be focused on reducing uncertainties where they will have the most impact

A range of methods

 $\rho(\theta_i, M(\boldsymbol{\theta})) = \frac{\operatorname{Cov}[\theta_i, M(\boldsymbol{\theta})]}{\sqrt{\operatorname{Var}(\theta_i)\operatorname{Var}(M(\boldsymbol{\theta}))}}$

Correlation coefficients

40

Estimated from input/output samples

Higher-order dependencies (i.e. dependence on two parameters varying together) won't be detected.

Can detect which parameter(s) would be informed in calibration before even collecting data!

A range of methods

42

Global Variance-Based Sensitivity Analysis [30]

$$S_{i} = \frac{\mathbb{V}_{\theta_{i}} \left[\mathbb{E}_{\theta_{\sim i}}[M|\theta_{i}] \right]}{\mathbb{V}[M]}$$

$$T_{i} = 1 - \frac{\mathbb{V}_{\boldsymbol{\theta}_{\sim i}} \left[\mathbb{E}_{\theta_{i}} [M | \boldsymbol{\theta}_{\sim i}] \right]}{\mathbb{V}[M]}$$

Effect of varying θ_i alone (averaging over other inputs)

Effect of varying θ_i alone and with all other inputs

Robust to nonlinearities and higher-order interactions between parameters

model evaluations: N(d + 2), N independent samples, d-dimensional input space

Assumes inputs statistically independent

A range of methods

- Distribution-based method [31]
 - Instead measure sensitivity of model output *distribution*.
 - Requires distribution to be estimated—extremely challenging with high input dimension

- Shapley values [32]
 - Game-theory based method
 - Relaxes assumption of independent inputs
 - Computationally costly $(2^d 1 \text{ evaluations})$

- Ongoing opportunities [33]
 - Computational cost high for more advanced methods, $\mathcal{O}(d^{\alpha}), \alpha \geq 1$

• Computationally tractable methods for correlated inputs

 Unifying process to identify appropriate sensitivity method for a given task/goal

Research areas in UQ

Bayesian OED overview

minimize uncertainty in parameter estimates

47 **Ongoing opportunities**

- Outer-loop analysis on expensive Bayesian inverse problem; leverage all efficiency gains possible
 - Surrogates/ROMs
 - Multimodel methods
 - Dimension reduction
 - Derivative-based methods
- Methods to efficiently search experimental design space (especially if it's high dimensional, e.g. many sensors)
- Methods to address heterogeneous data (i.e. sensor and satellite image data)
- Goal-oriented approaches [35]

Goal-oriented OED overview

minimize uncertainty in predictions

Figure courtesy of [34]

Slide courtesy of Rebekah White

Research areas in UQ

Thanks!

teresaportone.com

51 **References**

- 1. Smith, Ralph C. *Uncertainty Quantification: Theory, Implementation, and Applications*. Society for Industrial and Applied Mathematics, 2013.
- 2. Ghanem, Roger, David Higdon, and Houman Owhadi. Handbook of Uncertainty Quantification. Vol. 6. Springer, 2017. https://doi.org/10.1007/978-3-319-12385-1.
- Dalbey, Keith, Michael Eldred, Gianluca Geraci, John Jakeman, Kathryn Maupin, Jason A Monschke, Daniel Seidl, Anh Tran, Friedrich Menhorn, and Xiaoshu Zeng. "Dakota A Multilevel Parallel Object-Oriented Framework for Design Optimization Parameter Estimation Uncertainty Quantification and Sensitivity Analysis: Version 6.16 Theory Manual." Sandia National Lab.(SNL-NM), Albuquerque, NM (United States), 2022. <u>https://dakota.sandia.gov/sites/default/files/docs/6.16.0/Theory-6.16.0.pdf</u>.
- 4. Meyer, Mary A, and Jane M Booker. Eliciting and Analyzing Expert Judgment: A Practical Guide. SIAM, 2001. https://doi.org/10.1137/1.9780898718485.
- 5. Gramacy, Robert B. Surrogates: Gaussian Process Modeling, Design, and Optimization for the Applied Sciences. Chapman and Hall/CRC, 2020. https://bobby.gramacy.com/surrogates/.
- 6. Rasmussen, C.E., and C.K.I. Williams. Gaussian Processes for Machine Learning. Adaptive Computation and Machine Learning Series. MIT Press, 2005. https://gaussianprocess.org/gpml/.
- 7. Xiu, Dongbin. Numerical Methods for Stochastic Computations. Princeton University Press, 2010. https://doi.org/10.1515/9781400835348.
- Benner, Peter, Serkan Gugercin, and Karen Willcox. 2015. "A Survey of Projection-Based Model Reduction Methods for Parametric Dynamical Systems." SIAM Review 57 (4): 483– 531. <u>https://doi.org/10.1137/130932715</u>.
- 9. Peherstorfer, Benjamin, and Karen Willcox. 2016. "Data-Driven Operator Inference for Nonintrusive Projection-Based Model Reduction." Computer Methods in Applied Mechanics and Engineering 306 (July): 196–215. <u>https://doi.org/10.1016/j.cma.2016.03.025</u>.
- 10.Jolliffe, Ian T, and Jorge Cadima. 2016. "Principal Component Analysis: A Review and Recent Developments." *Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences* 374 (2065): 20150202. <u>https://doi.org/10.1098/rsta.2015.0202</u>.
- 11.Constantine, Paul G. 2015. Active Subspaces: Emerging Ideas for Dimension Reduction in Parameter Studies. SIAM. https://doi.org/10.1137/1.9781611973860.
- 12.Wang, Yasi, Hongxun Yao, and Sicheng Zhao. 2016. "Auto-Encoder Based Dimensionality Reduction." *RoLoD: Robust Local Descriptors for Computer Vision 2014* 184 (April): 232–42. https://doi.org/10.1016/j.neucom.2015.08.104.
- 13.Tenenbaum, Joshua B., Vin de Silva, and John C. Langford. 2000. "A Global Geometric Framework for Nonlinear Dimensionality Reduction." *Science* 290 (5500): 2319–23. https://doi.org/10.1126/science.290.5500.2319.
- 14.Bui-Thanh, Tan, Omar Ghattas, James Martin, and Georg Stadler. 2013. "A Computational Framework for Infinite-Dimensional Bayesian Inverse Problems Part I: The Linearized Case, with Application to Global Seismic Inversion." SIAM Journal on Scientific Computing 35 (6): A2494–2523. <u>https://doi.org/10.1137/12089586X</u>.
- 15.Stuart, A. M. 2010. "Inverse Problems: A Bayesian Perspective." Acta Numerica 19: 451–559. https://doi.org/10.1017/S0962492910000061.
- 16.Girolami, Mark, and Ben Calderhead. 2011. "Riemann Manifold Langevin and Hamiltonian Monte Carlo Methods." *Journal of the Royal Statistical Society: Series B (Statistical Methodology)* 73 (2): 123–214. https://doi.org/10.1111/j.1467-9868.2010.00765.x.
- 17.Hoffman, Matthew D, and Andrew Gelman. 2014. "The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo." J. Mach. Learn. Res. 15 (1): 1593–1623. https://www.jmlr.org/papers/volume15/hoffman14a/hoffman14a.pdf.
- 18.Petra, Noemi, James Martin, Georg Stadler, and Omar Ghattas. 2014. "A Computational Framework for Infinite-Dimensional Bayesian Inverse Problems, Part II: Stochastic Newton MCMC with Application to Ice Sheet Flow Inverse Problems." *SIAM Journal on Scientific Computing* 36 (4): A1525–55. <u>https://doi.org/10.1137/130934805</u>.
- 19.Blei, David M., Alp Kucukelbir, and Jon D. McAuliffe. 2017. "Variational Inference: A Review for Statisticians." Journal of the American Statistical Association 112 (518): 859–77. https://doi.org/10.1080/01621459.2017.1285773.
- 20.Cui, Tiangang, Kody J.H. Law, and Youssef M. Marzouk. 2016. "Dimension-Independent Likelihood-Informed MCMC." *Journal of Computational Physics* 304 (January): 109–37. https://doi.org/10.1016/j.jcp.2015.10.008.

52 **References**

- 21. Peherstorfer, Benjamin, Karen Willcox, and Max Gunzburger. "Optimal Model Management for Multifidelity Monte Carlo Estimation." *SIAM Journal on Scientific Computing* 38, no. 5 (January 1, 2016): A3163–94. https://doi.org/10.1137/15M1046472.
- 22.Giles, Michael B. "Multilevel Monte Carlo Methods." Acta Numerica 24 (2015): 259–328. https://doi.org/10.1017/S096249291500001X.
- 23.Gorodetsky, Alex A., Gianluca Geraci, Michael S. Eldred, and John D. Jakeman. "A Generalized Approximate Control Variate Framework for Multifidelity Uncertainty Quantification." *Journal of Computational Physics* 408 (May 1, 2020): 109257. https://doi.org/10.1016/j.jcp.2020.109257.
- 24.Schaden, Daniel, and Elisabeth Ullmann. "On Multilevel Best Linear Unbiased Estimators." SIAM/ASA Journal on Uncertainty Quantification 8, no. 2 (January 1, 2020): 601–35. https://doi.org/10.1137/19M1263534.
- 25.Kennedy, M. C., and A. O'Hagan. 2000. "Predicting the Output from a Complex Computer Code When Fast Approximations Are Available." Biometrika 87 (1): 1–13. http://www.jstor.org/stable/2673557.
- 26.Ng, Leo Wai-Tsun, and Michael Eldred. 2012. "Multifidelity Uncertainty Quantification Using Non-Intrusive Polynomial Chaos and Stochastic Collocation." In 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Structures, Structural Dynamics, and Materials and Co-Located Conferences. American Institute of Aeronautics and Astronautics. <u>https://doi.org/10.2514/6.2012-1852</u>.
- 27.Teckentrup, A. L., P. Jantsch, C. G. Webster, and M. Gunzburger. 2015. "A Multilevel Stochastic Collocation Method for Partial Differential Equations with Random Input Data." SIAM/ASA Journal on Uncertainty Quantification 3 (1): 1046–74. <u>https://doi.org/10.1137/140969002</u>.
- 28.Jakeman, John D., Michael S. Eldred, Gianluca Geraci, and Alex Gorodetsky. 2020. "Adaptive Multi-Index Collocation for Uncertainty Quantification and Sensitivity Analysis." International Journal for Numerical Methods in Engineering 121 (6): 1314–43. <u>https://doi.org/10.1002/nme.6268</u>.
- 29.Gorodetsky, A. A., J. D. Jakeman, and G. Geraci. 2021. "MFNets: Data Efficient All-at-Once Learning of Multifidelity Surrogates as Directed Networks of Information Sources." Computational Mechanics 68 (4): 741–58. <u>https://doi.org/10.1007/s00466-021-02042-0</u>.
- 30.Saltelli, Andrea, Chan, K., and Scott, E.M. Sensitivity Analysis. Wiley, 2009.
- 31.Borgonovo, E. "A New Uncertainty Importance Measure." Reliability Engineering & System Safety 92, no. 6 (June 1, 2007): 771–84. https://doi.org/10.1016/j.ress.2006.04.015.
- 32.Owen, Art B., and Clémentine Prieur. "On Shapley Value for Measuring Importance of Dependent Inputs." *SIAM/ASA Journal on Uncertainty Quantification* 5, no. 1 (January 1, 2017): 986–1002. <u>https://doi.org/10.1137/16M1097717</u>.
- 33.Razavi, Saman, Anthony Jakeman, Andrea Saltelli, Clémentine Prieur, Bertrand Iooss, Emanuele Borgonovo, Elmar Plischke, et al. "The Future of Sensitivity Analysis: An Essential Discipline for Systems Modeling and Policy Support." *Environmental Modelling & Software* 137 (March 1, 2021): 104954. <u>https://doi.org/10.1016/j.envsoft.2020.104954</u>.
- 34.Alexanderian, Alen. 2021. "Optimal Experimental Design for Infinite-Dimensional Bayesian Inverse Problems Governed by PDEs: A Review." Inverse Problems 37 (4): 043001. https://doi.org/10.1088/1361-6420/abe10c.
- 35. Attia, Ahmed, Alen Alexanderian, and Arvind K Saibaba. 2018. "Goal-Oriented Optimal Design of Experiments for Large-Scale Bayesian Linear Inverse Problems." *Inverse Problems* 34 (9): 095009. <u>https://doi.org/10.1088/1361-6420/aad210</u>.