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• Born and raised in Charlotte, NC

• Musical family

• First-generation PhD



• Major: Math, numerical track

• Minor: Italian, (almost) 

photography

• Numerical Linear Algebra

• Theory of Probability

• Real Analysis I/II

• Mathematical Statistics

• Numerical Analysis

• Complex Calculus



• VIGRE, Summer 2011

• Mathematical epidemiology 

project (Malaria)



• REU, Summer 2012

• Numerical model for embryonic 

tube formation



• PhD Computational Science, 

Engineering, and Mathematics

• Thesis “Representing Model-

Form Uncertainty from Missing 

Microstructural Information”

High-velocity “streaks” cause nonlocality in contaminant transport.

Traditional upscaled models ignore nonlocality.



• Optimization and Uncertainty 

Quantification department

• Interned Fall 2017

• Joined as staff January 2020

Nuclear waste repository modeling

NW Repository
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What is uncertainty quantification (UQ)?8

Uncertainty 
Quantification

Applied 
Mathematics

Disciplinary 
Science & 

Engineering

Computational 
Science

Probability & 
Statistics

The science of characterizing, quantifying, and reducing uncertainties in mathematical models.
My definition:

General references: [1-3]



UQ has taken off in the last couple decades9

“Uncertainty quantification is both a new field and one that is as old as the disciplines of 
probability and statistics.” (Smith 2013) [1]

Source: Web of Science



What is uncertainty?10

Lack of precise knowledge of a 
modeled quantity

Intrinsic variability in a modeled 
quantity

Inability to assign an exact value to a modeled quantity.

𝑓! + 𝑓" ≡ 𝐹 = 𝑚𝑎 ≡ 𝑚
𝑑#𝑥(𝑡)
𝑑𝑡#

𝑚
𝑑#𝑥(𝑡)
𝑑𝑡#

+ 𝑐
𝑑𝑥(𝑡)
𝑑𝑡

+ 𝑘𝑥 𝑡 = 0

𝑥 0 = 1,
𝑑𝑥(𝑡)
𝑑𝑡

0 = 0

How does uncertainty arise?
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Common sources of uncertainty11

Boundary + 
initial 

conditions
Measurement 

uncertainty

Model 
parameters

Model-form 
uncertainty

𝑚
𝑑#𝑥(𝑡)
𝑑𝑡# + 𝑐

𝑑𝑥(𝑡)
𝑑𝑡 + 𝑘𝑥 𝑡 = 0

𝑥 0 = 1,
𝑑𝑥(𝑡)
𝑑𝑡 0 = 0



Result: uncertainty in model predictions12

Boundary + 
initial 

conditions

Measurement 
uncertainty

Model 
parameters

Model-form 
uncertainty

Quantity of interest 
(QoI)



Real-world example13

Nuclear waste repository modeling

NW Repository

Points 129I tracked

Quantity of Interest
• Concentration of radionuclide 129I in 

nearby aquifer after 106 years

Sources of uncertainty
• Properties of canisters holding nuclear 

waste (e.g. degradation rate)

• Subsurface properties (e.g. porosity, 
permeability)

• Environmental conditions (e.g. incidence 
of earthquake, glaciation)
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How do we 
characterize
uncertainty?

Represent sources of uncertainty as random variables (RVs)

Encode what is known through the parameterization of the RV
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𝑚 ∼ 𝑈[0.9, 1.1] 𝑘 ∼ log𝒩 (2, 0.1!)𝑐 ∼ log𝒩 (0.1, 0.1!)

𝑝"#$ 𝒩 &,(! (𝑥) ≡
1

𝑥𝜎 2𝜋
exp −

1
2𝜎! log 𝑥 − 𝜇 !
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How do we 
quantify

uncertainty?

Propagate sources of uncertainty to QoIs
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Compute statistics of QoIs, e.g. mean, variance, tail probabilities
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How do we 
reduce

uncertainty?

Use data to gain more precise knowledge of sources of uncertainty

What is the likelihood the model produced the data for a given 𝑘, 𝑐?

𝑑 = ℳ 𝑘, 𝑐 + 𝜖A, 𝜖A ∼ 𝒩(0, 𝜎#)

𝑑 −ℳ(𝑘, 𝑐) ∼ 𝒩(0, 𝜎#)

𝑝 𝑑 𝑘, 𝑐 =
1

𝜎 2𝜋
exp −

𝑑 −𝑀 𝑘, 𝑐
#

2𝜎#

ℳ 𝑘, 𝑐 ≡ 𝑥(𝑡 = 10; 𝑘, 𝑐)

𝑚
𝑑#𝑥(𝑡)
𝑑𝑡#

+ 𝑐
𝑑𝑥(𝑡)
𝑑𝑡

+ 𝑘𝑥 𝑡 = 0

𝑑 = 𝑥BCDE(𝑡 = 10) + 𝜖A, 𝜖A ∼ 𝒩(0, 𝜎#)
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How do we 
reduce

uncertainty?

Use data to gain more precise knowledge of sources of uncertainty

𝑝 𝑑 𝑘, 𝑐 =
1

𝜎 2𝜋
exp −

𝑑 −𝑀 𝑘, 𝑐 #

2𝜎#

𝑝 𝑘, 𝑐 = 𝑝 𝑘 𝑝(𝑐)

Bayes’ Theorem

𝑝(𝑘, 𝑐|𝑑) =
𝑝 𝑑 𝑘, 𝑐 𝑝(𝑘, 𝑐)

∫ 𝑝 𝑑 𝑘, 𝑐 𝑝 𝑘, 𝑐 d𝑘d𝑐
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How do we 
reduce

uncertainty?

Use data to gain more precise knowledge of sources of uncertainty

This is also 
called Bayesian 

inference or 
Bayesian 

calibration
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How do we

• characterize
• quantify
• reduce

uncertainty in practice?



Harsh reality

• Models for practical problems challenging
• Nonlinear: propagating uncertainty + performing inference need many model evaluations
• Computationally expensive; can afford few evaluations, causing poor statistical accuracy
• High-dimensional problems

• Data expensive or impossible to attain

• Models imperfect representations of reality
• Leads to unquantified error in predictions, biased Bayesian calibrations
• But the correct model form is generally unknown (model-form uncertainty)

• Input/data uncertainties have to be modeled
• If no quantitative information, have to encode prior belief through expert elicitation [4]

20



Real-world example21

Nuclear waste repository modeling

NW Repository

Points 129I tracked

Data acquisition
• Subsurface properties: drill 

borehole(s)
• Canister properties: fabricate and 

test several canister specimens in 
the lab

Computational cost per model 
evaluation
• ~1.5 hours on 512 cores
• ~8 days on 4 cores
• ~22 years for 1000 samples on 4 

cores



Research areas in UQ22

Reduced-
order/surrogate 

models

Optimal experimental 
design Sensitivity analysis Algorithms for high 

dimensionality

Multimodel methodsBayesian inverse 
problems

Model-form 
uncertainty

Reduced-
order/surrogate 

models
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Goal: reduce 
computational burden 
of UQ by using 
approximate 
representations of 
model

𝑀 𝜃 ≈ 𝑓(𝜃)

Gaussian processes [5,6]

Stochastic expansions 
(polynomial chaos, stochastic 

collocation) [7]

Common statistical approaches

Proper orthogonal 
decomposition [8,9]

Principal component analysis 
[10]

Common reduced-order 
model (ROM) approaches

https://gregorygundersen.com/blog/2019/06/27/gp-regression/

Machine learning!

And, more recently



Ongoing opportunities

• Efficient surrogates/ROMs for high-dimensional models

• Adaptive/goal-oriented surrogate/ROM construction

• More theory for error incurred in UQ analyses by using 
approximation of 𝑀(𝜃)

• Multimodel surrogates

24



25

Reduced-
order/surrogate 

models

Optimal experimental 
design Sensitivity analysis Algorithms for high 

dimensionality

Efficient forward 
propagation

Bayesian inverse 
problems

Model-form 
uncertainty

Algorithms for high 
dimensionality

Research areas in UQ



Two types of high dimensionality26

Infinite 
dimensionality High cardinality



Ongoing opportunities

• Dimension reduction (PCA [10], active subspaces [11], autoencoders [12], ISOMAP [13])
• Methods encouraging/exploiting sparsity

• Expanded theory for infinite-dimensional problems with less restrictive assumptions (e.g. 
linearity, Gaussianity) [14,15]

• Improve on existing inference methods
• Derivative-based (MALA/HMC, Stochastic Newton, VI) [16-19]
• Data-informed (DILI) [20]

• Methods to address high cardinality, especially for
• Surrogates
• Bayesian inference
• Sensitivity analysis

27
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Reduced-
order/surrogate 

models

Optimal experimental 
design Sensitivity analysis Algorithms for high 

dimensionality

Multimodel methodsBayesian inverse 
problems

Model-form 
uncertainty

Multimodel methods

Research areas in UQ
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Idea: exploit lower-
fidelity, cheaper 
models to lower 
cost for same 
accuracy

NW Repo

Aquifer

Discrete 
fracture 
networkMeshed 

computational 
domain

UQ 
analysis

Medium
Fine

Coarse
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Idea: exploit lower-
fidelity, cheaper 
models to lower 
cost for same 
accuracy

Discretization

Modeling assumptions



Sampling-based methods31

.𝑀(𝜃) =
1
𝑁
1
!"#

$

𝑀 𝜃 ! , 𝜃 ! ∼ 𝑝 𝜃 i. i. d.

𝕍 .𝑀 =
𝕍[𝑀]
𝑁



Sampling-based methods – control variates32

𝑀F(𝜃) 𝑐F =
𝐶F
𝐶
≪ 1 corr M,MF = 𝜌

E𝑀GH 𝜃 = E𝑀 𝜃 + 𝛼 E𝑀F 𝜃 − 𝔼 𝑀F 𝔼 E𝑀GH 𝜃 = 𝔼[𝑀]

𝕍 E𝑀GH 𝜃 =
1
𝑁

𝕍 𝑀 + 𝛼#𝕍 𝑀F + 2𝛼Cov[𝑀,𝑀F]

𝛼∗ = min
J
𝕍 E𝑀GH 𝜃 = −

Cov[𝑀,𝑀F]
𝕍[𝑀F]

𝕍 E𝑀GH(𝜃) =
𝕍[𝑀]
𝑁

(1 − 𝜌#)

Unbiased

𝜌! ≈ 1 → orders of 
magnitude reduction in 
variance



Sampling-based methods – beyond control variates33

E𝑀GH 𝜃 = E𝑀 𝜃 + 𝛼 E𝑀F 𝜃 − 𝔼 𝑀F Have to estimate this too

Multifidelity Monte Carlo [21]:

𝜽

𝜽𝟏

E𝑀OPOG = E𝑀 𝜽 + 𝛼 R𝑀F 𝜽 − R𝑀F 𝜽F

𝑟F∗ =
Cost 𝑀 𝜌#

Cost 𝑀F (1 − 𝜌#)

𝕍 E𝑀OPOG =
𝕍 𝑀
𝑁

1 − 𝜌#
𝑟F − 1
𝑟F

𝑁F = 𝑟F𝑁𝛼∗ = −
𝜌 𝕍 𝑀
𝕍 𝑀F



Multimodel methods34

• Theory extends to multiple (nonhierarchical) models

• Many algorithms combining different models and sample sets in 
different ways [21-24]

• Recent focus on multifidelity surrogates, e.g. Gaussian processes [25], 
multifidelity polynomial chaos [26], and several others [27-29]

𝑀 𝜃 ≈ 𝑓(𝜃) 𝑀 𝜃 −𝑀# 𝜃 ≈ 𝑓% 𝜃

𝑀# 𝜃 ≈ 𝑓# 𝜃

𝑀 𝜃 ≈ 𝑓# 𝜃 + 𝑓%(𝜃)

vs.



Multimodel methods: ongoing opportunities

• Moving beyond functions of moments, e.g. tail probabilities, CDFs

• Startup cost of sampling all models to compute sample correlations →
exploration vs exploitation tradeoff to find optimal model ensemble

• Stochastic models: stochasticity weakens correlation, but averaging it 
out can models too costly

• Addressing dissimilar parametrization (high and low fidelity models 
don’t have same uncertain parameters)

35
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Reduced-
order/surrogate 

models

Optimal experimental 
design Sensitivity analysis Algorithms for high 

dimensionality

Multimodel methodsBayesian inverse 
problems

Model-form 
uncertainty

Bayesian inverse 
problems

Research areas in UQ



Markov Chain Monte Carlo [14,16-18,19] and Variational Inference [19] 
methods numerically approximate 𝑝(𝜽|𝑑)--need many model evaluations

Challenges and ongoing opportunities37

𝑝 𝑑 𝜽 =
𝑝 𝑑 𝜽 𝑝(𝜽)

∫ 𝑝 𝑑 𝜽 𝑝 𝜽 d𝜽
𝑝(𝑑|𝜽) =

1
𝜎 2𝜋

exp −
𝑑 −𝑀 𝜽 &

2𝜎&

Opportunities for improvement: methods addressing multimodal 
and/or non-Gaussian posteriors; high dimensionality; model error 

Much work in multimodel, derivative-based, & surrogate/reduced-order 
modeling methods to make this tractable. Methods in optimization can be 
leveraged

If 𝑀(𝜽) nonlinear, can’t compute analytically.



Research areas in UQ38

Reduced-
order/surrogate 

models

Optimal experimental 
design Sensitivity analysis Algorithms for high 

dimensionality

Multimodel methodsBayesian inverse 
problems

Model-form 
uncertainty

Sensitivity analysis



What model inputs (parameters) most affect model predictions?

Sensitivity analysis methods provide a quantitative measure of output 
sensitivity to each input [30]

Extremely powerful tool in mathematical modeling. Supports 

• Scientific discovery/model interpretation – increase understanding of 
relationships between inputs + their interactions and outputs

• Dimension reduction – parameters identified to not affect model 
predictions can be screened out of further uncertainty analysis

• Model improvement – resources can be focused on reducing 
uncertainties where they will have the most impact

39



A range of methods40

Correlation coefficients

𝜌 𝜃* , 𝑀 𝜽 =
Cov[𝜃* , M 𝜽 ]

𝑉𝑎𝑟 𝜃* 𝑉𝑎𝑟 𝑀 𝜽

Source: http://en.wikipedia.org/wiki/Correlation

Estimated from input/output samples

Slope doesn’t matter, just 
strength of linear 

relationship

Nonlinear/nonmonotonic 
dependencies will not be 

detected.

Higher-order dependencies (i.e. dependence on two parameters varying together) won’t be detected.



Can detect which parameter(s) would be informed in calibration 
before even collecting data!

41
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A range of methods42

Global Variance-Based Sensitivity Analysis [30]

𝑆! =
𝕍'! 𝔼𝜽∼! 𝑀 𝜃!

𝕍[𝑀]
𝑇! = 1 −

𝕍𝜽∼𝒊 𝔼'![𝑀|𝜽∼𝒊]
𝕍[𝑀]

Effect of varying 𝜃* alone (averaging 
over other inputs)

Effect of varying 𝜃* alone and with all 
other inputs

Robust to nonlinearities and higher-order interactions between parameters

# model evaluations: 𝑁(𝑑 + 2),      𝑁 independent samples,       𝑑-dimensional input space

Assumes inputs statistically independent



A range of methods

• Distribution-based method [31]
• Instead measure sensitivity of model output distribution.
• Requires distribution to be estimated—extremely challenging with 

high input dimension

• Shapley values [32]
• Game-theory based method
• Relaxes assumption of independent inputs
• Computationally costly (2" − 1 evaluations)

43



Ongoing opportunities [33]

• Computational cost high for more advanced methods, 𝒪 𝑑J , 𝛼 ≥ 1

• Computationally tractable methods for correlated inputs

• Unifying process to identify appropriate sensitivity method for a given 
task/goal 

44



Research areas in UQ45

Reduced-
order/surrogate 

models

Optimal experimental 
design Sensitivity analysis Algorithms for high 

dimensionality

Efficient forward 
propagation

Bayesian inverse 
problems

Model-form 
uncertainty

Optimal experimental 
design



Bayesian OED 
overview Standard OED problem

minimize 
uncertainty in 
parameter 
estimates

minimize 
uncertainty 

Figure courtesy of [34]

Slide courtesy of Rebekah White

𝑑(𝑤) min
]
Ψ 𝑤 = 𝑓 𝑝(𝜃|𝑑 𝑤 )



Ongoing opportunities

• Outer-loop analysis on expensive Bayesian inverse problem; leverage all efficiency gains 
possible
• Surrogates/ROMs
• Multimodel methods
• Dimension reduction
• Derivative-based methods

• Methods to efficiently search experimental design space (especially if it’s high 
dimensional, e.g. many sensors)

• Methods to address heterogeneous data (i.e. sensor and satellite image data)

• Goal-oriented approaches [35]

47



minimize 
uncertainty in 
predictions

Goal-oriented 
OED overview

minimize 
uncertainty 

Figure courtesy of [34]

Slide courtesy of Rebekah White

𝑑(𝑤) min
]
Ψ^ 𝑤 = 𝑓 𝑝(𝑀(𝜃)|𝑑 𝑤 )



Research areas in UQ49

Reduced-
order/surrogate 

models

Optimal experimental 
design Sensitivity analysis Algorithms for high 

dimensionality

Efficient forward 
propagation

Bayesian inverse 
problems

Model-form 
uncertainty Come to my talk tomorrow!



Thanks!
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